题目内容 (请给出正确答案)
[主观题]

设是n(n>4)阶方阵A的4个特征向量,它们分别属于不同的特征值λ1λ2λ3λ4,记证明:

设是n(n>4)阶方阵A的4个特征向量,它们分别属于不同的特征值λ1λ2λ3λ4,记证明:

设是n(n>4)阶方阵A的4个特征向量,它们分别属于不同的特征值λ1λ2λ3λ4,记证明:设是n(n是n(n>4)阶方阵A的4个特征向量,它们分别属于不同的特征值λ1λ2λ3λ4,记设是n(n>4)阶方阵A的4个特征向量,它们分别属于不同的特征值λ1λ2λ3λ4,记证明:设是n(n证明:设是n(n>4)阶方阵A的4个特征向量,它们分别属于不同的特征值λ1λ2λ3λ4,记证明:设是n(n线性无关

查看答案
如搜索结果不匹配,请 联系老师 获取答案
您可能会需要:
您的账号:,可能会需要:
您的账号:
发送账号密码至手机
发送
更多“设是n(n>4)阶方阵A的4个特征向量,它们分别属于不…”相关的问题

第1题

设3阶方阵A的特征值为1,-1,0,对应的特征向量分别为α1,α2,α3.令矩阵B=A2-2A+3E.求B-1的特征值与特征向量.

设3阶方阵A的特征值为1,-1,0,对应的特征向量分别为α1,α2,α3.令矩阵B=A2-2A+3E.求B-1的特征值与特征向量。

点击查看答案

第2题

设3阶方阵A的特征值为λ1=1,λ2=2,λ3=-3,方阵B=A3-7A+5E.求方阵B.

设3阶方阵A的特征值为λ1=1,λ2=2,λ3=-3,方阵B=A3-7A+5E.求方阵B.

点击查看答案

第3题

设n阶方阵A,B可交换,即AB=融,且A有n个互不相同的特征值,证明: (1) A的特征向量都是B的特征向量;(2) B相似

设n阶方阵A,B可交换,即AB=融,且A有n个互不相同的特征值,证明:

(1) A的特征向量都是B的特征向量;(2) B相似于对角矩阵.

点击查看答案

第4题

设3阶方阵A的特征值为λ1=2,λ2=2,λ3=1,对应的特征向量依次为p1=(0,1,1)T
设3阶方阵A的特征值为λ1=2,λ2=2,λ3=1,对应的特征向量依次为p1=(0,1,1)T

,p2=(1,1,1)T,p3=(1,1,0)T,求A。

点击查看答案

第5题

设3阶方阵A的特征值为1,1,3,对应的特征向量分别为求矩阵A。

设3阶方阵A的特征值为1,1,3,对应的特征向量分别为

求矩阵A。

点击查看答案

第6题

求矩阵设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,X1,X2是分别属于λ1和λ2的特征向量,试证明X1+X2

设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,X1,X2是分别属于λ1和λ2的特征向量,试证明X1+X2不是A的特征向量.

点击查看答案

第7题

设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().

A.3

B.5

C.7

D.不能确定

点击查看答案

第8题

设A为3阶实对称矩阵.A的特征值λ1=1.λ2=2分别对应特征向量是A*的属于特征值μ的特征向

设A为3阶实对称矩阵.A的特征值λ1=1.λ2=2分别对应特征向量是A*的属于特征值μ的特征向量,求a与μ的值。并求A*.

点击查看答案

第9题

设A为3阶矩阵,α。,α为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,(I)证明α1,α2,α3线性

设A为3阶矩阵,α。,α为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,

(I)证明α1,α2,α3线性无关;

(Ⅱ)令P=(α11,α2,α3),求P-1AP.

点击查看答案

第10题

设A为3阶矩阵,α1,α2为A的分别属于特征值-1、1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线

设A为3阶矩阵,α1,α2为A的分别属于特征值-1、1的特征向量,向量α3满足Aα3=α2+α3,

(I)证明α1,α2,α3线性无关;

(Ⅱ)令P=(α1,α2,α3),求P-1AP.

点击查看答案
发送账号至手机
密码将被重置
获取验证码
发送
温馨提示
该问题答案仅针对搜题卡用户开放,请点击购买搜题卡。
马上购买搜题卡
我已购买搜题卡, 登录账号 继续查看答案
重置密码
确认修改
温馨提示
每个试题只能免费做一次,如需多次做题,请购买搜题卡
立即购买
稍后再说
警告:系统检测到您的账号存在安全风险

为了保护您的账号安全,请在“赏学吧”公众号进行验证,点击“官网服务”-“账号验证”后输入验证码“”完成验证,验证成功后方可继续查看答案!

微信搜一搜
赏学吧
点击打开微信
警告:系统检测到您的账号存在安全风险
抱歉,您的账号因涉嫌违反赏学吧购买须知被冻结。您可在“赏学吧”微信公众号中的“官网服务”-“账号解封申请”申请解封,或联系客服
微信搜一搜
赏学吧
点击打开微信